Fulton County Schools 2021-2022

GSE Fifth Grade Curriculum Map							
Semester 1							
Unit 1		Unit 2		Unit 3		Unit 4	
Order of Operations and Whole Numbers		Adding and Subtracting with Decimals		Multiplying and Dividing with Decimals			
6-7 weeks		4-5 weeks		4-5 weeks		5-6 weeks	
Grade Level Standard	Direct Prerequisite Standard	Grade Level Standard	Direct Prerequisite Standard	Grade Level Standard	Direct Prerequisite Standard	Grade Level Standard	Direct Prerequisite Standard
MGSE5.0A. 1		MGSE5.NBT. 1		MGSE5.NBT. 2		MGSE5.NF. 1	MGSE4.NF. 1 MGSE4.NF. 3
MGSE5.0A. 2		MGSE5.NBT. 3	$\begin{aligned} & \text { MGSE4.NBT. } 2 \\ & \text { MGSE4.NF.7* } \\ & \hline \end{aligned}$	MGSE5.NBT. 7		MGSE5.NF. 2	MGSE4.NF. 2
MGSE5.NBT. 1	MGSE4.NBT. 1 MGSE4.NF. 5 MGSE4.NF. 6 MGSE4.NF. 7	MGSE5.NBT4	MGSE4.NBT. 3			MGSE5.NF. 3	MGSE4.MD. 2 MGSE4.OA. 1 MGSE4.0A. 2
MGS5.NBT. 2		MGSE5.NBT. 7	MGSE4.NBT.4*			MGSE5.NF. 4	MGSE4.NF. 4
MGSE5.NBT. 5	MGSE4.NBT. 4 MGSE4.NBT. 5					MGSE5.NF. 5	$\begin{aligned} & \text { MGSE4.MD.2* } \\ & \text { MGSE4.NF.1* } \\ & \text { MGSE4.OA.1* } \\ & \text { MGSE4.OA.2* } \end{aligned}$
MGSE5.NBT. 6	MGSE4.NBT.4* MGSE4.NBT. 6					MGSE5.NF. 6	$\begin{aligned} & \hline \text { MGSE4.MD.2* } \\ & \text { MGSE4.OA.1* } \\ & \text { MGSE4.OA.2* } \end{aligned}$
						MGSE5.NF. 7	MGSE4.NF.4*
						MGSE5.MD. 2	MGSE4.MD. 4
These units were written to build upon concepts from prior units, so later units contain tasks that depend upon the concepts addressed in earlier uni All units include the Mathematical Practices and indicate skills to maintain. Prioritized standards in RED Prerequisite standards in BLUE Prerequisite prioritized standards in BOLD BLUE Prerequisite standards already addressed are denoted with * Underlined standards link to STATE IMPLEMENTATION VIDEOS							

Fulton County Schools 2021-2022

Fulton County Schools 2021-2022
GSE Fifth Grade

GSE Fifth Grade Expanded Curriculum Map

Standards for Mathematical Practice

1 Make sense of problems and persevere in solv 2 Reason abstractly and quantitatively. 3 Construct viable arguments and critique the r 4 Model with mathematics.	them. ning of others.	5 Use appropriate tools strategically. 6 Attend to precision. 7 Look for and make use of structure. 8 Look for and express regularity in repeated reasoning.	
Unit 1	Unit 2	Unit 3	Unit 4
Order of Operations and Whole Numbers	Adding and Subtracting with Decimals	Multiplying and Dividing with Decimals	Adding, Subtracting, Multiplying and Dividing Fractions
Write and interpret numerical expressions. MGSE.5.OA. 1 Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols. MGSE.5.OA. 2 Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7 , then multiply by 2 " as $2 \times(8+7)$. Recognize that $3 \times(18932+921)$ is three times as large as $18932+921$, without having to calculate the indicated sum or product. MGSE4.NBT. 1 Recognize that in a multidigit whole number, a digit in any one place represents ten times what it represents in the place to its right. For example, recognize that $700 \div 70=10$ by applying concepts of place value and division. MGSE4.NF. 5 Express a fraction with denominator 10 as an equivalent fraction with denominator 100 , and use this technique to add two fractions with respective denominators 10 and $100 .{ }^{1}$ For example, express $3 / 10$ as $30 / 100$, and add $3 / 10+4 / 100=34 / 100$. MGSE4.NF. 6 Use decimal notation for fractions with denominators 10 or $\mathbf{1 0 0}$. For example, rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62 on a number line diagram. MGSE4.NF. 7 Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same	Understand the place value system. MGSE.5.NBT. 1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left. MGSE4.NBT. 2 Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using $>$, $=$, and $<$ symbols to record the results of comparisons. MGSE4.NF.7* MGSE.5.NBT. 3 Read, write, and compare decimals to thousandths. a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392=3 \times 100+4 \times 10+7 \times$ $1+3 \times(1 / 10)+9 \times(1 / 100)+2 \times$ (1/1000). b. Compare two decimals to thousandths based on meanings of the digits in each place, using $>$, $=$, and $<$ symbols to record the results of comparisons. MGSE4.NBT. 3 Use place value understanding to round multi-digit whole numbers to any place. MGSE.5.NBT. 4 Use place value understanding to round decimals up to the hundredths place. Perform operations with multi-digit whole numbers and with decimals to hundredths.	Understand the place value system. MGSE.5.NBT. 2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10 , and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10 . Perform operations with multi-digit whole numbers and with decimals to hundredths. MGSE.5.NBT. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.	MGSE4.NF. 1 Explain why two or more fractions are equivalent $\frac{a}{b}=\frac{n \times a}{n \times b}$ ex: $\frac{1}{4}=\frac{3 \times 1}{3 \times 4}$ by using visual fraction models. Focus attention on how the number and size of the parts differ even though the fractions MGSE4.NF. 3 Understand a fraction $\frac{a}{b}$ with a numerator >1 as a sum of unit fractions $\frac{1}{b}$. a. Understand addition and subtraction of fractions as joining and separating parts referring to the same whole. b. Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: $3 / 8=1 / 8+1 / 8+$ $1 / 8 ; 3 / 8=1 / 8+2 / 8 ; 21 / 8=1+1+$ $1 / 8=8 / 8+8 / 8+1 / 8$. c. Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction. d. Solve word problems involving addition and subtraction of fractions referring to the same whole and having like

[^0]Fulton County Schools 2021-2022
whole. Record the results of comparisons with the symbols $>$, $=$, or $<$, and justify the conclusions, e.g., by using a visual model.
Understand the place value system.
MGSE.5.NBT. 1 Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left.
MGSE.5.NBT. 2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10 , and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10
MGSE4.NBT. 4 Fluently add and subtract multi-digit whole numbers using the standard algorithm.
MGSE4.NBT. 5 Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
Perform operations with multi-digit whole numbers and with decimals to hundredths. MGSE.5.NBT. 5 Fluently multiply multi-digit whole numbers using the standard algorithm (or other strategies demonstrating understanding of multiplication) up to a 3 digit by 2 digit factor.
MGSE4.NBT.4*
MGSE4.NBT. 6 Find whole-number quotients and remainders with up to fourdigit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. MGSE.5.NBT.6. Fluently divide up to 4-digit dividends and 2-digit divisors by using at least one of the following methods: strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations or concrete models. (e.g., rectangular arrays, area models)

MGSE4.NBT.4*
MGSE.5.NBT. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.
denominators, e.g., by using visua fraction models and equations to represent the problem.

Use equivalent fraction

and subtract fractions.

MGSE.5.NF. 1 Add and subtract fractions and mixed numbers with unlike denominators by finding a common denominator and equivalent fractions to produce like denominators.
MGSE4.NF. 2 Compare two fractions with different numerators and different denominators, e.g., by using visual fraction models, by creating common denominators or numerators, or by comparing to a benchmark fraction such as $\frac{1}{2}$ Recognize that comparisons are valid only when the two fractions refer to the same whole Record the results of comparisons with symbols $>=$, or $<$, and justify the conclusions.
MGSE.5.NF. 2 Solve word problems involving addition and subtraction of fractions, including cases of unlike denominators (e.g., by using visual fraction models or equations to represent the problem). Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result $2 / 5+1 / 2=$ $3 / 7$, by observing that $3 / 7<1 / 2$.
MGSE4.MD. 2 Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
MGSE4.OA. 1 Understand that a multiplicative comparison is a situation in which one quantity is multiplied by a specified number to get another quantity
a. Interpret a multiplication equation as a comparison e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 .
b. Represent verbal statements of multiplicative comparisons as multiplication equations.

Fulton County Schools 2021-2022

			MGSE4.OA. 2 Multiply or divide to solve word problems involving multiplicative comparison. Use drawings and equations with a symbol or letter for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison. ${ }^{2}$ Apply and extend previous understandings of multiplication and division to multiply and divide fractions. MGSE.5.NF. 3 Interpret a fraction as division of the numerator by the denominator $(a / b=a \div$ $b)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. Example: $\frac{3}{5}$ can be interpreted as " 3 divided by 5 and as 3 shared by 5 ". MGSE4.NF. 4 Apply and extend previous understandings of multiplication to multiply a fraction by a whole number e.g., by using a visual such as a number line or area model. a. Understand a fraction a / b as a multiple of $1 / b$. For example, use a visual fraction model to represent 5/4 as the product $5 \times(1 / 4)$, recording the conclusion by the equation $5 / 4=5 \times$ (1/4). b. Understand a multiple of a / b as a multiple of $1 / b$, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times(2 / 5)$ as $6 \times(1 / 5)$, recognizing this product as $6 / 5$. (In general, $n \times(a / b)$ $=(n \times a) / b$.) c. Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat $3 / 8$ of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?

Fulton County Schools 2021-2022

			MGSE.5.NF. 4 Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction. a. Apply and use understanding of multiplication to multiply a fraction or whole number by a fraction. Examples $\frac{a}{b} \times q$ as $\frac{a}{b} \times \frac{q}{1}$ and $\frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d}$ b. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. MGSE4.MD.2* MGSE4.NF.1* MGSE4.OA.1* MGSE4.OA.2* MGSE.5.NF. 5 Interpret multiplication as scaling (resizing), by: a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication. Example 4×10 is twice as large as 2×10. b. Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence a / b $=(n \times a) /(n \times b)$ to the effect of multiplying a / b by 1 . MGSE4.MD.2* MGSE4.OA.1* MGSE4.OA.2* MGSE.5.NF. 6 Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem. MGSE4.NF.4* MGSE.5.NF. 7 Apply and extend previous understandings of division to divide unit

Fulton County Schools 2021-2022

			fractions by whole numbers and whole numbers by unit fractions. a. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $(1 / 3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1 / 3) \div 4=1 / 12$ because $(1 / 12) \times 4=1 / 3$. b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div(1 / 5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div(1 / 5)$ $=20$ because $20 \times(1 / 5)=4$. Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many $1 / 3$-cup servings are in 2 cups of raisins? MGSE4.MD. 4 Make a line plot to display a data set of measurements in fractions of a unit $\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right)$. Solve problems involving addition and subtraction of fractions with common denominators by using information presented in line plots. For example, from a line plot, find and interpret the difference in length between the longest and shortest specimens in an insect Represent and interpret data.

[^1]Fulton County Schools 2021-2022

Fulton County Schools 2021-2022
GSE Fifth Grade

GSE Fifth Grade Expanded Curriculum Map

Standards for Mathematical Practice

$\mathbf{1}$ Make sense of problems and persevere in solving them.
$\mathbf{2}$ Reason abstractly and quantitatively.
$\mathbf{3}$ Construct viable arguments and critique the reasoning of others.

5 Use appropriate tools strategically.
2 Reason abstractly and quantitatively.
4 Model with mathematics.
6 Attend to precision.
7 Look for and make use of structure.
8 Look for and express regularity in repeated reasoning.

Unit 5	Unit 6	Unit 7	Unit 8
2D Figures	Volume and Measurement	Geometry and the Coordinate Plane	Show What We Know
MGSE4.G. 2 Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles. Classify two-dimensional figures into categories based on their properties. MGSE.5.G. 3 Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles. MGSE.5.G.4. Classify two-dimensional figures in a hierarchy based on properties (polygons, triangles, and quadrilaterals).	MGSE4.MD. 1 Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; 1, ml; hr, min, sec. a. Understand the relationship between gallons, cups, quarts, and pints. b. Express larger units in terms of smaller units within the same measurement system. c. Record measurement equivalents in a two column table. MGSE4.MD.2* Convert like measurement units within a given measurement system. MGSE5.MD. 1 Convert among different-sized standard measurement units (mass, weight, length, time, etc.) within a given measurement system (customary and metric) (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems. Represent and interpret data. MGSE5.MD. 2 Make a line plot to display a data set of measurements in fractions of a unit ($1 / 2,1 / 4,1 / 8$). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally. Geometric Measurement: understand concepts of volume and relate volume to multiplication and division. MGSE5.MD. 3 Recognize volume as an attribute of solid figures and understand concepts of volume measurement.	Graph points on the coordinate plane to solve real-world and mathematical problems. MGSE.5.G. 1 Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y coordinate). MGSE.5.G. 2 Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. MGSE4.OA.5 Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. Explain informally why the pattern will continue to develop in this way. For example, given the rule "Add 3" and the starting number 1 , generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even Analyze patterns and relationships. MGSE.5.OA. 3 Generate two numerical patterns using a given rule. Identify apparent relationships between corresponding terms by completing a function table or input/output table. Using the terms created, form and graph ordered pairs on a coordinate plane.	ALL

Fulton County Schools 2021-2022

	A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume. a. A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units. MGSE5.MD. 4 . Measure volumes by counting unit cubes, using cubic cm , cubic in, cubic ft , and improvised units. MGSE4.MD. 3 Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor. MGSE5.MD. 5 Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume. a. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold wholenumber products as volumes, e.g., to represent the associative property of multiplication. b. Apply the formulas $V=l \times w \times h$ and $V=b \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole number edge lengths in the context of solving real world and mathematical problems. c. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real world problems.		

[^0]: requirement at this grade.

[^1]: ${ }^{3}$ Students able to multiply fractions in general can develop strategies to divide fractions in general, by reasoning about the relationship between multiplication and division. But division of a fraction by a fraction is not a requirement at this grade.

